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Abstract
Computing systems designed using reconfigurable hard-
ware are now used in many sensitive applications, where
security is of utmost importance. Unfortunately, a strong
notion of security is not currently present in FPGA hard-
ware and software design flows. In the following, we
discuss the security implications of using reconfigurable
hardware in sensitive applications, and outline problems,
attacks, solutions and topics for future research.

1 Introduction
Reconfigurable hardware is increasingly being used in
sensitive applications. Examples include our national
infrastructures (power grids, network routers, satel-
lites), transportation (planes, trains, automobiles), mili-
tary equipment (weapons, radar, software defined radio)
and medical devices. In each case, failure has serious con-
sequences, and security is of utmost importance. Further-
more, FPGAs1 are found in consumer electronics where
we store personal information ranging from the mundane
(phone numbers, calendar) to more personal (email, voice
mail, financial) information.
There are many potential ways to exploit a computing

device. These include both hardware and software at-
tacks, that can be done in a physical or logical manner.
These attacks can steal confidential information, modify
the system to perform devious, unintended activities, per-
form denial of service, or even destroy the system. As

1We use the terms reconfigurable hardware and FPGA interchange-
ably throughout the article.

reconfigurable hardware continues to become more pow-
erful and cheaper, it becomes more attractive to designers
as well as more susceptible to attackers, who will attempt
to exploit any security weakness. Unfortunately, the secu-
rity of reconfigurable hardware has, until recently, largely
been ignored.
In this paper, we discuss potential attacks that can be

done on reconfigurable hardware. These include modify-
ing the hardware, observing sensitive information through
physical side channels, adding unintended functionality
through the design tools, and stealing intellectual prop-
erty. We attempt to outline these and other potential at-
tacks and provide a survey of solutions to combat them.
We also mention avenues for future research.
The paper is organized as follows. The next section lays

out three stages in the life cycle of an FPGA − manufac-
turing, application development and deployment. Then
Section 3 describes some security problems found during
these various stages. In each case, we first identify the
problem, provide some potential attacks, survey solutions
and give ideas for future research. We conclude in Section
4.

2 Reconfigurable Hardware Life
Cycle

Before we discuss specific security problems, attacks
and solutions, we describe the lifecycle of reconfigurable
hardware. We divide the lifetime into three stages−man-
ufacturing, application development and deployment (see
Figure 1). We use these three stages to provide a coarse
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Figure 1: The life cycle of reconfigurable hardware, from manufacturing to application development to deployment.
The hardware is handled by a number of different sources using a wide range of design tools. Every stage of the life
cycle contains security threats that must be collectively addressed to insure the safe usage of the hardware.

grain grouping of the security issues surrounding the re-
configurable device.

2.1 Manufacturing Stage

Reconfigurable hardware is designed and manufactured
by the FPGA vendors − primarily Altera and Xilinx who
are the market leaders. New architectures are developed
approximately every 12 to 18 months. The exact details
of each architecture are patented and/or trade secrets, in
order to maintain a competitive advantage. It is possible to
reverse engineer them and get the specifics; however this
is a difficult task requiring sophisticated invasive physical
attacks. We discuss such attacks in Section 3.2.
The FPGA companies are fabless, so they rely on a

third party foundry, usually located in Asia, to manufac-
ture the physical devices. These devices are then either
sold directly to the system developers who create a final
product, or to a third party partner company (e.g. Digi-
lent, Avnet, NuHorizons) who create a development board
with the FPGA and a set of peripherals. These boards are

purchased by another entity, who customize to fit their
end product. The boards are usually targeted towards
users in a specific industry such as medical, image pro-
cessing, wireless, high performance computing, and so
on. A development board contains an FPGA along with
memory, video and audio interfaces, radios, testing inter-
face, codecs, analog to digital (A/D) and digital to analog
(D/A) converters, etc., depending on the targeted applica-
tion space.

2.2 Application Development Stage

At this point, the life cycle moves into the application de-
velopment stage. It is during this stage where the FPGA is
integrated into the final system, and is programmed to im-
plement its intended functionality. The designer uses ei-
ther the FPGA chip and builds their own platform to meet
their intended application, or uses a third party FPGA de-
velopment board.
The application development process involves the use

of a variety of CAD tools typically from a number of dif-



ferent sources. These tools include electronic system de-
sign (ESL) tools which take a high level language (C/C++,
MATLAB, SystemC) and translate it to a register transfer
level (RTL) hardware description language (HDL). Exam-
ples of such tools include Xilinx AccelDSP, Mathworks
HDL Coder, both of which take MATLAB and translate
it to HDL. Other tools include Synphora’s Pico, Forte’s
Cynthesizer, Mentor Graphics’ CatapultC and ImpulseC
that transform variants of C/C++ into HDL. The RTL is
then synthesized into a logical netlist using any number of
logic synthesis tools from EDA companies like Cadence,
Mentor Graphics, Synopsys, and Magma. Finally, phys-
ical synthesis tools transform the logic netlist into a bit-
stream which is used to program the FPGA. The FPGA
vendors provide physical synthesis tools, as do several of
the aforementioned EDA companies.
The different tools throughout the application design

stage may use Intellectual Property (IP) cores. The ESL
design tools often include customized high level func-
tions such as microcontrollers (Neos or Microblaze), sig-
nal processing cores (filters, linear transforms, audio and
video codecs), compression, encryption cores, etc. These
cores may come from different sources, each of which
could have different levels of trust. For instance, we may
receive a core from one of the tool vendors or use some
open source core from an online repository like Open-
cores [18]. Each of these requires that you trust the maker
of the core. These IP cores may be distributed in a vari-
ety of forms across all the different tools. For instance,
the microcontroller IP core can be specified at the RTL,
logic or physical netlist or even as a bitstream. Distribu-
tion in a form later on this list is often preferred by the
vendors as it is harder to reverse engineer a core specified
as a bitstream as opposed to one described in RTL.

2.3 Deployment Stage
The final stage in the lifetime of the reconfigurable hard-
ware is when the chip is deployed into the environ-
ment. This obviously depends on the application, and FP-
GAs have a wide range of usage. These could be cars,
planes, wireless routers, phones, the Mars Rover, satel-
lites, weapons systems, cameras, underwater modems,
and so on. The vulnerability of the device in the deploy-
ment stage is heavily dependent on the application. It in-
volves the physical security of the device (i.e. how easily

accessible and protected is it from a physical handling)
as well as the functionality of the device (e.g. military
devices contain more valuable designs, and therefore are
more vulnerable to attack than a student project).

2.4 Securing the Life Cycle
Attackers will target the weakest link and exploit the eas-
iest flaws found anywhere in the life cycle. Therefore,
when addressing security concerns, we must understand
the lifecycle of the device - from cradle to the grave (and
beyond). The life cycle includes the environment, devel-
opment tools, and testing equipment, among other things,
that will be used on the device. Any specific information
about how the device is used can and should be consid-
ered during every security decision; such additional infor-
mation can only make the resulting system more secure.
A trusted system relies on a management plan and pro-

cedures to ensure the security of the system. This man-
agement plan defines the tools and procedures that must
be used to develop and test the system. This often in-
cludes formal methods to ensure the system meets the re-
quired specifications, and vulnerability assessment to an-
alyze the system’s robustness against exploitation. Proce-
dures are developed to ensure the safe delivery of the sys-
tem to its users, and provide the users appropriate guid-
ance and documentation so that they can configure and
run the system without introducing vulnerabilities.
The Common Criteria (CC) [10] is a system assurance

framework that provides guidance to developers and con-
fidence to customers and consumers of the system. The
CC describes ten types of assessment required to deter-
mine if a system is trustworthy:

1. Analysis and checking of processes and procedures;

2. Checks that processes and procedures are applied;

3. Analysis of the correspondence between design rep-
resentations;

4. Analysis of the design representation against the re-
quirements;

5. Verification of proofs;

6. Analysis of guidance documents;



7. Analysis of the functional tests developed and the re-
sults provided;

8. Independent functional testing;

9. Vulnerability analysis;

10. Penetration testing.

While these assessments are not specifically targeted
towards systems with reconfigurable hardware, they are
certainly applicable. For example, the bitstream is a pro-
gram analogous to machine code for microprocessors.
Therefore, these assurances should apply to the applica-
tion development design flow. The hardware manufac-
turing stage is also highly dependent on software (EDA
tools), so it also at least partially relates to these assess-
ments. This begs the question: in what ways is the FPGA
life cycle different from the software life cycle? We aim
to answer that question, and many others, in the following
section. We do this by listing a number of security prob-
lems and attacks found during the life cycle of a reconfig-
urable device, and present potential solutions to mitigate
these security flaws.

3 Reconfigurable Hardware Secu-
rity Problems, Attacks and Solu-
tions

In this section, we discuss some of the security problems
found in various stages of the reconfigurable hardware life
cycle. In each case, we describe the problem, list the at-
tacks, provide some solutions and suggest potential topics
for future research.

3.1 Trusted Hardware
3.1.1 Problem Statement

Due to the immense costs associated with fabricating
chips in the latest technology node, the design, manufac-
turing and testing of integrated circuits has moved across
a number of companies residing in various countries. This
makes it difficult to secure the supply chain and opens up
a number of possibilities for security threats. The prob-
lem boils down the the question: how can these fabless

companies assure that the chip received from the foundry
is exactly the same as the design given to the foundry −
nothing more, nothing less?

3.1.2 Attacks

A Trojan horse is a malicious piece of hardware inserted
into the integrated circuit that appears to perform a spe-
cific (normal) action, but actually performs some unin-
tended (potentially malicious) action. E.g., additional
logic that blocks access to some resource (memory, I/O
pins), enables access to some restricted data, or performs
wrong functionality may be added to the integrated circuit
during manufacturing. One way to combat this is through
testing. However, the Trojan horse could be triggered by
a special code that is applied when the device is in the
field, i.e., it is activated after a specific input is received.
A well-informed attacker who knows the intimate details
of the device could pick an extremely uncommonly oc-
curring input. Using this input would make it quite rare
that this would be triggered during normal testing. The in-
put could be triggered using a variety of physical attacks.
One invasive trigger would be to directly access the I/O
pins to perform the action. Other less invasive, but much
more difficult triggers (perhaps bordering on science fic-
tion?) include using electromagnetic radiation or thermal
energy to activate the Trojan horse.
A kill switch is the malicious manipulation of the hard-

ware itself and/or the software that runs on the chip, that
once activated, renders the chip inoperable. The kill
switch could be performed through thinning certain cru-
cial wires, so that electromigration eventually eliminates
part of a wire, creating an open connection.
A backdoor is a form of Trojan horse where functional-

ity is added to the circuit that enables access to the system,
e.g., to disable or enable functionality. An example of this
is to selectively disable the encryption core. This could be
done without the user’s knowledge and thus is harder to
detect when the attack is occurring when compared to the
kill switch, which totally disables the entire chip.
These attacks may seem unlikely, however there are

many documented cases of maliciously modified hard-
ware. This goes all the way back to the Cold War when
US and Russian security agencies used software and hard-
ware attacks to spy on each other. US agents sabotaged
oil pipeline control software and allowed it to be stolen



by Russian spies. Not to be outdone, the Russians in-
tercepted the delivery of typewriters heading to the US,
and hacked them to add a keylogger [16]. More recently,
there are theories that a European chip maker developed a
kill switch into a microprocessor, and this was utilized to
disable Syrian radars from detecting an Israeli attack [1].
This conspiracy theory is grounded in reality as hardware
Trojans have been developed. For example, King et al.
[13] show how to add a small amount of logic to the Leon
processor to enable a number of attacks, and Agrawal et
al. [2] describe how to add 400 logic gates to a public key
encryption circuit which enables them to leak the key.

3.1.3 Solutions

The Department of Defense and the National Security
Agency (NSA) started the Trusted Foundries Program as
a method to ensure a secure supply chain for chips used
by the sensitive government products. This crisis was de-
tailed in a Defense Science Board Report (DSB) [4] and
was cited earlier in a white paper by US Senator Lieber-
man [16]. The DSB report concludes with a recommen-
dation to Congress to make the supply of electronics a na-
tional priority. A trusted foundry is certified as a trusted
environment capable of producing leading edge micro-
electronics parts, and several foundries have been certified
as part of this program.
Trimberger [27] discusses the risks of untrusted

foundries fabricating FPGAs. He mentions that the
foundry does not know which devices are going to which
customers, making it difficult to formulate an application-
specific attack. The regular nature of the FPGA archi-
tecture, along with the huge manufacturing volume, al-
lows for extensive testing that is amortized over all FPGA
customers. Furthermore, the functionality of the recon-
figurable hardware is programmed after fabrication. The
finer the granularity of programmability, the less an at-
tacker at a foundry can know about a design. As an ex-
ample, compare a microprocessor and an FPGA. An at-
tacker knows a good deal about how the microprocessor
will execute programs and the structure of the design, al-
lowing the attacker to target specific parts of the proces-
sor. It was shown that only a minimal amount of hardware
(on the order of 1000’s of logic gates) is required to hack
a microprocessor, e.g. to obtain high level access [13].
However, an FPGA is an array of programmable logic,

and the foundry has little idea as to what and where dif-
ferent parts of the application will be implemented. This
potentially makes it much harder to attack the system. Re-
configurability can also be used to provide security. As-
suming that the attacker only modified a portion of the
fabric and that we are able to detect this modification, we
could simply not use that portion. We could also contin-
ually move the secure data and processing cores around
the programmable logic. We could also implement the de-
sign redundantly making it less likely that an attack works
at all. Redundant designs must be modified in the exact
same way. It should be stated that these suggestions all
border on “security by obscurity,” and more formal meth-
ods must be investigated.

The DARPA Trust in Integrated Circuits program acts
as a follow-on program for commercial off-the-shelf de-
vices that are not fabricated in a trusted foundry. Gov-
ernment officials realized that it is not feasible to develop
all integrated circuits in a trusted environment, and they
found it necessary to develop methodologies in an attempt
to develop verification methods to trust circuits that are
not homemade. One of the three thrusts of this program
are “ensuring trust when employing field programmable
gate arrays (FPGAs) in military systems first awards were
made in”.

3.1.4 Future Research

There is a pressing need to secure the entire semiconduc-
tor manufacturing supply chain. This includes trusted de-
sign kits, tool flows, design libraries, packaging, and as-
sembly. Further research is required to understand mali-
cious hardware “viruses”. What can we learn from soft-
ware red team exercises? How can we categorize these
viruses, worms, Trojans, etc.? How can we analyze them?
Is there an anti-virus program for hardware? Should it be
based on signatures or behavior/anomaly? What about
trusted delivery? Tamper resistance? What is the set of
best practices to mitigate the threat of malicious hard-
ware? What can we learn from the (failed?) efforts to
detect subversion in software? What is a good defense
strategy for hardware development?



3.2 Physical attacks
3.2.1 Problem Statement

Physical attacks monitor characteristics of the system in
an attempt to glean information about its operation. These
attacks can be invasive, semi-invasive or non-invasive. In-
vasive attacks include probing stations, chemical solvents,
lasers, ion beams and/or microscopes to tap into the de-
vice and gain access to its internal workings. This in-
volves de-packaging and possibly removing layers of the
device to enable probing or imaging. Side channel attacks
are less invasive attacks that exploit physical phenomena
such as power, timing, electromagnetic radiation, thermal
profile, and acoustic characteristics of the system.

3.2.2 Attacks

Passive, non-invasive attacks that physically probe the tar-
get device to glean information about its data or internal
workings. Perhaps the easiest attack is to probe the wires
on the board and/or the pins into the chip. However, the
number of printed circuit board layers and modern pack-
aging (ball grid arrays) make this increasingly difficult.
More invasive “sand and scan” attacks remove passiva-
tion layers via chemicals, lasers or focused ion beams.
This could theoretically provide access to internal wires
to read data or access and manipulate the functionality of
the device.
Semi-invasive attacks remove the packaging, but they

do not physically damage or alter the chip. These attacks
include analyzing the electromagnetic radiation emitted
during the functioning of the chip. Other side channels
are commonly used to gain information from physical
characteristics of the system. For example, timing in-
formation, power consumption, supply voltage variations
and thermal radiation provide an unintended source of in-
formation which can be exploited to break the system.
Many side-channel attacks require considerable technical
knowledge of the internal operation of the system.
Data Remanence is residual information that exists

even after an attempt to erase or remove it. The data could
remain for a variety of reasons including physical prop-
erties of the storage device or incomplete removal oper-
ations. An example of the former is that DRAM cells
contain their contents for seconds to minutes after power-
down, even at room temperature and even if removed from

a motherboard [6]. An example of the latter occurs when
a user deletes a file; it is removed from the file system but
remains on the hard drive until another file overwrites it.
Leakage of sensitive information through data remanence
is possible if the device falls into the wrong hands. There
are a number of general techniques to combat data rema-
nence including overwriting, degaussing, encryption and
physical destruction.
The question of how long the state of the FPGA re-

mains after the device is powered off was studied by Tuan
et al [28]. They found that data remanence was design and
data dependent as the 1 and 0 bits discharge at different
rates. Furthermore, the remanence varied across bits used
to control the logic and those bits in the bitstream used to
program the interconnect. This is due to the fact that they
are powered by different supply voltages. They also quan-
tify the effect that temperature plays on the remanence. It
is well-known that SRAM bits at lower temperatures hold
charge longer than those at higher temperatures.
The security implications are that FPGAs can retain

the state of the bitstream for up to 2 minutes even after
power off (when supply voltages are floating). Further-
more, since the remanence time depends on the state (1
or 0) as well as the type of programming bit (logic or in-
terconnect) it may be possible to determine information
about the unencrypted bitstream by studying the rema-
nence of the bits. They showed that grounding the power
supply reduces the remanence time; 20% information loss
(this is the point where design becomes secure [21]) is
achieved in less than 1 millisecond.

3.2.3 Solutions

Most physical attacks are not specific to FPGAs and have
been studied in the context of other hardware devices.
Physical attacks are perhaps the hardest to prevent; for-
tunately they are also the most technologically sophisti-
cated, requiring substantial amounts of money and de-
termination. For example, it is conceivable for focused
ion beams to alter the wiring and bypass security fea-
tures. However, this requires expensive equipment and
significant know-how, especially when attacking modern
devices fabricated with nanometer feature sizes. There
are a number of solutions to physical attacks for micro-
processors and ASICs. To a large extent, these can also
be used for reconfigurable hardware. For instance, se-



cure co-processors such as the IBM 4758 [22] encapsulate
hardware within a tamper-sensing and tamper-responding
environment. Similar packaging can be used for FPGAs.
Timing, supply voltage and electromagnetic side chan-

nels for discovering the key(s) in cryptographic applica-
tions have been studied extensively [14, 5, 15]. None of
these are specific to reconfigurable hardware, though the
techniques are certainly applicable, at least to some ex-
tent. One of the few FPGA specific solutions to physical
attacks is work by Yu and Schaumont, which provides a
solution to the differential power attack [29]. Since tech-
niques that make ASIC circuits resistant to side channel
attacks do not necessarily translate to FPGAs, they devel-
oped a logic duplication and symmetric routing technique
to reduce the risk of side channel attacks. Their method-
ology ensures that no matter what the input, the output
power remains the same. They do this by creating a com-
plementary design that is identical to the original design
in terms of power dissipation, i.e., there is a 0 to 1 transi-
tion for every 1 to 0 transition and vice-versa.

3.2.4 Future Research Directions

Research directions for physical attacks largely revolve
around red teaming to identify potential weaknesses. Of-
ten such weaknesses are quickly classified. Existing side
channels are not particularly well studied, especially those
specific to reconfigurable hardware. Obviously there are
differences between ASICs and FPGAs in timing, power,
temperature dissipation and other potential phenomena
that could be exploited as a side channels. How to ex-
ploit and then eliminate or at least mitigate side channels
remains an open and interesting research question.

3.3 Design Tool Subversion
3.3.1 Problem Statement

Programming an FPGA relies on a large number of so-
phisticated CAD tools that have been developed by a sub-
stantial number of people across many different compa-
nies and organizations. For example, AccelDSP [7] trans-
lates MATLAB [24] algorithms into RTL HDL, logic syn-
thesis translates this HDL into a netlist, and a physical
synthesis tool uses a place-and-route algorithm to convert
this netlist into a bitstream. To further complicate the situ-

ation, IP cores are an increasingly common methodology
for design reuse. These are distributed in many different
forms, including RTL HDL, netlists or as a bitstream.
In the end, these different design tools and IP produce

a set of inter-operating cores, and as Ken Thompson said
in his Turing Award Lecture, “You can’t trust code that
you did not totally create yourself” [25]. You can only
trust your final system as much as your least-trusted de-
sign path. Subversion of the design tools could easily re-
sult in malicious hardware being inserted into the final
implementation. For instance, if there is a critical piece
of functionality, perhaps an encryption core which holds
secret keys, there is no way to verify that this core can-
not be tampered with or snooped on without completely
building the entire system yourself, which includes all of
the design tools that you use for synthesis as well as the
reconfigurable hardware. Alternatively, you must develop
ways in which you can trust the hardware and the design
tools. We discussed the former in Section 3.1, and we
tackle the later in this section.
Domain separation and isolation is a fundamental prin-

ciple of secure systems, and plays a large role in design
tool subversion. Saltzer and Schroeder define complete
isolation as a “protection system that separates principals
into compartments between which no flow of information
or control is possible” [19]. Of course, no system works
in complete isolation, and systems must allow for com-
munication or sharing of data.
Often, specific portions of the chip are more sensitive

than others. A prime example is an encryption core. Pro-
viding assurances on isolation of cores allows us to use
IP cores with various levels of trust. In this way, design
tool subversion problems are to a large extent similar to
those found in multilevel security (MLS). The IP cores
may hold information with different sensitivities (e.g. se-
curity levels). They should allow access to information
and communication only to those IP cores that have ap-
propriate permission and prevent IP cores from obtaining
information for which they lack authorization.

3.3.2 Attacks

Covert channels are an attack where rogue IP cores use
a shared resource to transmit information without the au-
thorization or knowledge of the shared resource. For ex-
ample, a malicious core may transmit information about



the internal state of the reconfigurable hardware using an
IP core that controls some I/O (audio, video, radio).
Side channels, which are described in Section 3.2.2, are

another potential avenue of attack. The IP cores have ac-
cess to internal resources of the chip, allowing them to tap
into side channels in a much easier way than at the chip
or device level.
A bypass circumvents security features through rerout-

ing, spoofing or other means. An example of bypass is to
reroute data from one core to another, or even to I/O pads
and therefore out of the chip. Bypass is risky because,
unlike narrow bandwidth covert channels that are difficult
to exploit, bypass can present a large, easily exploitable
overt leak in the system.

3.3.3 Solutions

Moats and drawbridges are a statically verifiable method
to provide isolation and physical interface conformance
for multi-core designs [8]. It employs a logical separa-
tion technique that spatially separates the IP cores on an
FPGA, relying on design tools that enforce restrictions
on the placement and routing of specific cores. “Moats”
are buffer zones surrounding the core that one wishes to
isolate. Static analysis and interconnect tracing are per-
formed on the bitstream to ensure that only specified com-
munication connections (“drawbridges”) between cores
are permitted.
A similar idea called “fences” was simultaneously pro-

posed by McLean and Moore [17]. Though they do not
provide extensive unclassified details, they appear to be
using a similar technique to isolate regions of the chip by
placing a buffer between them (aka fence) which is anal-
ogous to moats. They have been working closely with
the NSA and have performed an exhaustive vulnerability
assessment, and they have met the standards of the NSA
Fail Safe Design Assurance (FSDA) specification.
Sanitization or redaction is the process of removing

sensitive information, so that it may be distributed to a
broader audience. The familiar case of redaction is the
“blacking out” of text in a document that corresponds to
sensitive information. A similar process could occur with
sensitive data stored in reconfigurable hardware. A bit-
stream sanitization procedure called configuration scrub-
bing for applications that perform partial reconfiguration
is described in [8]. This uses the ICAP to zero out all of

the flip-flops and configuration bits in the area previously
occupied by the core being swapped out. This ensures that
the next core that occupies that space of the logic fabric
cannot obtain any data stored by the previous core.

3.3.4 Future research

The problem of trusting the design tools is a difficult one,
and there is much room for research in this area. Possi-
ble solutions include the development of trusted tools that
are stripped-down versions of commercial design tools.
This is unattractive because each synthesis stage has sub-
stantial opportunities for optimizations, which the current
tools heavily employ. Furthermore, even simple versions
of these tools would be quite complex. Other ideas in-
clude verification of each stage of the design flow by ap-
plying formal methods, model checking and/or theorem
proving. This is currently done to some extent in design
tools; however, the scope of what can be formally verified
is small. Methods to increase the scope are needed.
Other questions for future research in this area include:

Can we apply configuration management and/or static
analysis to HDL code? Is there a way to develop “safe”
hardware languages? Can we assure the redaction of sen-
sitive information once it leaves the IP core?

3.4 Design Theft
3.4.1 Problem Statement

The bitstream necessarily holds all the information that is
required to program the FPGA to perform a specific task.
This data is often proprietary information, and the result
of many months/years of work. Therefore, protecting the
bitstream is the key to eliminating intellectual property
theft. Furthermore, the bitstream may contain sensitive
data, e.g. the cryptographic key.

3.4.2 Attacks

Cloning is the unauthorized copying of the design. This
attack is dangerous because once the bitstream is in hand,
it is rather easy to buy another FPGA and use that bit-
stream to create a replica of the system fromwhich the bit-
stream was stolen. Such a counterfeit device can be sold
more cheaply, since a significant portion of the costs are
due to the design of the application running on the FPGA.



In many systems, the bitstream is stored externally in non-
volatile external memory. In such a case, the attacker can
either directly read the memory or eavesdrop on the bus
when the FPGA is powered up and the bitstream is feed
into the device.
Reverse engineering is the process of discovering prop-

erties of the design, e.g., by translating the bitstream into
some higher level form. This is done with the intention of
making a device that does a similar thing or analyzing the
internal data or structure of the device, e.g., to find out the
encryption key.
A readback attack directly obtains the bitstream from

the functioning device. Many FPGAs allow the configu-
ration to be directly read out of the device either through
JTAG, ICAP or another similar bitstream programming
interface.

3.4.3 Solutions

Design theft is a serious financial threat to application
developers. FPGA vendors have realized this and have
developed a number of solutions to enhance the security
of the bitstream. As such, this is probably the most re-
searched problem that we will discuss. Unfortunately, we
do not have the space to describe every piece of research
in this area, and we focus on the basic tenets.
One way to protect the bitstream is to program the

FPGA at a secure facility and constantly keep the FPGA
powered during field deployment. The bitstream is
only resident within the FPGA, and it cannot be easily
stolen assuming that bitstream readback functions are not
present. The downside is that the device must be pow-
ered constantly, and it does not allow for reprogramming.
It should be noted that this is very similar to the security
provided by antifuse and other non-volatile FPGAs. Of
course, non-volatile FPGAs do not require power to keep
the bitstream resident, as it is burned in during manufac-
turing.
The next logical step for protecting the bitstream is

through encryption. Encryption relies on an invertible
non-linear function making the bitstream unreadable to
anyone who does not possess the key. Bitstream encryp-
tion was first suggested in a patent by Austin [3]. The
bitstream is encrypted and stored in external memory. It
is then read into the FPGA, decrypted using a key stored
in non-volatile memory, and used to configure the FPGA.

This requires that either all devices have the same key (a
very bad idea which was done in Actel 60RS family of
SRAM programmed FPGA [12]), or each device has a
custom key burned. The Xilinx Virtex II family used a
variant of this idea, but it stored the key in a volatile reg-
ister which was powered by a battery [26]. Since we only
need to power the key, a small battery will last for quite
some time (on the order of 10 years). There is a dedi-
cated decryption core resident on the Virtex family archi-
tectures, and features such as disabling readback, elim-
inating read/write to the key registers, and bitstream in-
tegrity checks are in place to restrict access to the key.
Some FPGAs include an interface that provides the de-

vice access to its bitstream. This enables partial reconfig-
uration, performs bitstream decompression, and is used to
decrypt the bitstream. This can also be used to detect and
correct bitstream errors, whether it be from single event
upsets, or intentional malicious attacks performed in the
field.
Digital watermarking can be performed on the design,

which embeds a hidden signature that can be later used
to prove design theft. These signatures can vary signifi-
cantly, targeting different parts of the design. One exam-
ple of digital watermarking would be to modify the rout-
ing of wires in such a way that indicates a certain signa-
ture. When done properly, this is hard to detect and can
be shown with great certainty that it is an intentional wa-
termark and not a random occurrence in the physical syn-
thesis tools. An article by Kahng et al [11] presents the
fundamentals of integrated circuit watermarking and de-
scribes a method for watermarking FPGAs at the physical
level, which involves manipulating unused portions of the
configuration bitstream.
Encryption provides confidentiality of the design, but

it does not say anything about its authenticity. Authenti-
cation gives an assurance on the identity or source of the
bitstream. This allows the FPGA device to confirm the
developer of the bitstream that it is loading, and makes
certain that it is not modified in any way. Furthermore,
authentication can be used for the reverse process − to
ensure that an IP core is only run on authorized FPGAs.
Simpson and Schaumont [20] describe a mutual authenti-
cation of IP cores and the reconfigurable hardware. They
use physically unclonable functions (PUFs) [23] to cre-
ate a unique signature for each specific piece of hardware.
This along with an identity of the IP core developer is de-



livered to a third party initiating a protocol which verifies
the identity of both the hardware and software.

3.4.4 Future Research

As we mentioned, this is a well researched area, particu-
larly in industry, as IP theft has substantial financial im-
plications. However, there is still room for more research
in this area including: How can we make the bit-stream
protection mechanisms more resistant to an attack from
a determined adversary, such as a foreign government?
What about the malicious insider attack (e.g., Xilinx or
Altera employees)? How strong is the authentication in
these remote update channels? How can we perform bit-
stream encryption in applications that use partial recon-
figuration? PUFs provide a great way to uniquely identify
a specific FPGA. This is a fundamental need for many se-
curity primitives. How can we best utilize this? And what
is the best way to generate PUFs on FPGAs?

3.5 System Security
3.5.1 Problem Statement

The problem that we are dealing with here is the ability to
make assurances that during the deployment of the device
it does not do anything potentially harmful. This requires
that we perform monitoring of the system and provide the
system with information on what it can and cannot do.

3.5.2 Attacks

A denial-of-service (DoS) attack is an attempt to make a
computer resource unavailable to its intended users. A
simple example of a DoS attack is reprogramming, turn-
ing off, or destroying an FPGA that functions as a network
router.
There are many physical attacks that can be used dur-

ing deployment to steal the sensitive data/information that
is stored within the FPGA, e.g., passwords, personal and
financial information (credit card numbers, social secu-
rity numbers), encryption keys, and so on. These physical
attacks are described in more detail in Section 3.2.
Reconfiguration obviously plays an important role in

the life cycle of reconfigurable hardware. Indeed, the abil-
ity to reprogram the hardware to fix design errors, provide
system updates and/or perform partial reconfiguration is

an attractive feature. However, this opens a number of
security holes in the system. The updates must be deliv-
ered to the system in a secure manner. The updates may
be performed through a physical reprogramming of the
FPGA; however, it is certainly feasible and desirable for
the FPGA to be updated remotely, e.g., through the net-
work. In both cases, the updating agent must somehow
authenticate itself. Authentication is done using a variety
of methods, each of which has its benefits and drawbacks.
Biometric techniques such as fingerprint readers or retina
scanners are obviously very secure, but they require phys-
ical access to the system, and they add cost to the sys-
tem. Less secure methods include passwords and public
key cryptography. These methods are well-studied tech-
niques, and applying such techniques employed in other
secure systems to FPGAs systems is certainly possible.
Authentication techniques using PUFs (as described in
Section 3.4.3) is another potential solution.

3.5.3 Solutions

To provide memory protection on an FPGA, we proposed
the use of a reconfigurable reference monitor that enforces
the legal sharing of memory among cores [9]. A mem-
ory access policy is expressed in a specialized language,
and a compiler translates this policy directly to a circuit
that enforces the policy. The circuit is then loaded onto
the FPGA along with the cores. We can use moats and
drawbridges to protect the reference monitor from rout-
ing interference and to prevent the reference monitor from
being bypassed.

3.5.4 Future Research

Since this research area lies in the deployment stage of
the life cycle, we must rely upon solutions to many of the
problems in earlier life cycle stages, which are described
in previous sections. One broad research question that en-
compasses the entire lifetime is: How do we achieve high-
assurance FPGA systems using formal methods, system
evaluation, etc.? Other research possibilities involve ap-
plying security primitives to multi-core systems to en-
force multilevel security/information flow (e.g., Bell and
LaPadula). Another promising technique in this area is
the use of data tags, which carry information about where
the data has resided, and policies about what we can and



should be done with that tagged data. Another topic that
spans across problem areas and life cycle stages is: how
can we prevent a denial-of-service attack launched by a
“malicious core”? Other cross-cutting topics are: can we
develop a secure form of virtual memory to provide re-
source arbitration for FPGAs? And how can we apply
dynamic security results to the problem of partial recon-
figuration?

4 Conclusions
We addressed problems of reconfigurable hardware secu-
rity by providing attacks, solutions and areas for future
research. We started with a discussion of the life cycle
of reconfigurable hardware. We divided the life cycle
into the manufacturing stage, the application development
stage and finally the deployment stage. Each stage has
unique security implications, and we attempted to address
the major problems facing the design and use of FPGAs
in sensitive applications. We specifically addressed the
topics of trusted hardware, physical attacks, design tool
subversion, design theft and system security.
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